

171

7.13 Results

The previously described code provided an example of how to classify Mnist

images using RNNs. The code only evaluated accuracy for this example although

you can evaluate for the other metrics as well. I leave that as an exercise to the

reader. For comparison, I ran this code as written here an obtained classification

accuracies as high as or higher than 97%-99%.

7.14 Summary

In this chapter Recurrent Neural Networks (RNNs) were presented and

discussed. An example using the Mnist hand written digits data set was used for

the analysis. Issues related to data representation and RNN architecture were also

discussed.

172

CHAPTER 8: GENERATIVE ADVERSARIAL

NETWORKS

In this section of the book I will cover Generative Adversarial Networks (GANs).

Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) are a first

attempt at representing unsupervised problems in the context of games (e.g.

GANs are modeled as a two player adversarial game). One of the biggest

challenges we face with supervised learning is annotating the data. We cannot

annotate automatically and without annotations we cannot train our learning

models. But what if we could substitute the annotation of the data for something

else? For instance, what if we could model the annotation task as a game or use

other previous knowledge about the world as labels. These ideas are one of the

main motivations for GANs.

GANs are deep neural networks that consist of a generator network connected to

a discriminator network. The discriminator network has training data and the

generator network only has random or noise data as input. GANs are essentially 2

player games where one player (the generator) creates synthetic data samples,

while the second player (the discriminator) takes the generated sample and

performs a classification.

This classification is performed to determine if the synthetic sample is similar to

the distribution of the discriminator’s training data. Since both networks are

connected, the deep neural network (GAN) can learn to generate better synthetic

samples with the help of the discriminator’s output. Basically, the discriminator

tells the generator how to adjust its weights to produce better synthetic samples.

173

Generative Adversarial Networks are methods that use 2 deep neural networks to

interact with each other and generate data. Its formulation is consistent with 2

player adversarial game frameworks. One of the 2 algorithms (or networks) tries

to learn a data distribution and produce new samples similar to the samples in the

real data (the generator). The second algorithm (the adversary) is a classifier that

tries to determine if the new samples generated by the generative algorithm are

fake or real. These 2 algorithms work together to achieve an optimal outcome of

producing better output samples.

The code to implement a GAN network is presented below.

Figure. A GAN network using MNIST.

True or

False
Discriminator()

G=Generator(Z)

Real Data (X)

Random Data

(Z)

X

G

174

8.1 GAN code

In this section, the GAN code will be described. First we list the libraries that we

need.

import tensorflow as tf

import numpy as np

from numpy import genfromtxt

Next we initialize our variables

batch_size = 8

hidden_size = 4

num_steps = 5000
display_step = 10

seed = 42

tf.set_random_seed(seed)

We will need some helper functions such as a log estimation function.

def log(x):

 return tf.log(tf.maximum(x, 1e-5))

To keep things simple, instead of reading in data, we are going to generate it

automatically. We will generate samples with a normal distribution of mean=4

and sigma = 0.5. N is the number of samples to generate.

These samples are for the discriminator and represent the real data.

175

class DataDistribution(object):

 def __init__(self):

 self.mu = 4

 self.sigma = 0.5

 def sample(self, N):

 samples = np.random.normal(self.mu, self.sigma, N)

 samples.sort()

 return samples

The data from the distribution class looks like this:

array([3.3777126 , 3.46725909, 3.65951541, 3.81755036, 3.81998276,

 3.92007 , 4.28720089, 4.51158124])

We also provide a set of data for the generator. Think of this as noise. We set a

range between [-range, range] but the values are random. The generator uses

noise as input.

class GeneratorDistribution(object):
 def __init__(self, range):

 self.range = range

 def sample(self, N):

 return np.linspace(
 -self.range, self.range, N) + np.random.random(N) * 0.01

176

The data from the generator class looks like this:

>>> generatorData

array([-7.99054428, -6.2211434 , -4.43866942, -2.65729133, -0.88879437,

 0.89649839, 2.67079517, 4.45113515, 6.22879001, 8.00656172])

First we define the layer function for the GAN.

def layer_GAN(input, weight_shape, bias_shape):
 w_init = tf.random_normal_initializer(stddev=1.0)
 bias_init = tf.constant_initializer(0.0)
 W = tf.get_variable("w", weight_shape, initializer=w_init)
 b = tf.get_variable("b", bias_shape, initializer=bias_init)

 return tf.matmul(input, W) + b

With GANs we have 2 inference functions; one for the generator and one for the

discriminator. The inference function for the generator is:

def inference_generator(input):
 h1=tf.nn.softplus(layer_GAN(input,[input.get_shape()[1], 4], [4]))
 h2 = layer_GAN(h1, [h1.get_shape()[1], 1] , [1])

 return h2

The inference function for the generator with values is:

def inference_generator(input):
 h1=tf.nn.softplus(layer_GAN(input,[1, 4], [4]))
 h2 = layer_GAN(h1, [4, 1] , [1])

 return h2

The neural network in inference_generator() looks like the following:

177

And the inference function for the discriminator is:

def inference_discriminator(input):
 h1 = tf.nn.relu(layer_GAN(input, [1, 8],[8]))
 h2 = tf.nn.relu(layer_GAN(h1, [8, 8] , [8]))
 h3 = tf.nn.relu(layer_GAN(h2, [8, 8], [8]))
 h4 = tf.sigmoid(layer_GAN(h3, [8, 2] , [2]))

 return h4

Notice that the discriminator has more capacity to learn.

The neural network in inference_discriminator() looks like the following:

Figure. Neural network in inference_generator().

input output hidden

178

Figure. Deep neural network in inference_discriminator().

input output h1 h2 h3

179

The GAN has 2 loss functions to calculate max entropy; one for the discriminator

and one for the generator.

The loss for the discriminator is as follows:

def loss_d_GAN(D1, D2):

 loss_d = tf.reduce_mean(-log(D1) - log(1-D2))

 return loss_d

Think of the 2 parameters in loss_d_GAN as tending to 1 and 0 like so

def loss_d_GAN(D1, D2):

 loss_d = tf.reduce_mean(-log(D1) - log(1-D2))

 return loss_d

And the loss for the generator is:

def loss_g_GAN(D2):

 loss_g = tf.reduce_mean(-log(D2))

 return loss_g

Think of parameter in loss_g_GAN as tending to 1 like so

def loss_g_GAN(D2):

 loss_g = tf.reduce_mean(-log(D2))

 return loss_g

Next we can define the optimization function as follows:

def training_GAN(cost):
 step = tf.Variable(0)
 optimizer = tf.train.AdamOptimizer(0.001)
 train_op=optimizer.minimize(cost)

1

1

0

180

 return train_op

Once the core functions are defined, we can proceed to define our placeholders.

We select a batch size of 8 so that x and z are data matrices of size [8, 1]. So they

contain 8 samples with 1 feature each.

batch size = 8

so x and z are data matrices of size 8 x 1
8 samples with 1 feature each

x = tf.placeholder(tf.float32, shape=(batch_size , 1))

z = tf.placeholder(tf.float32, shape=(batch_size , 1))

Now we proceed to call the core functions as shown below:

with tf.variable_scope('G'):

 output_G = inference_generator(z)

with tf.variable_scope('D'):

 output_D1 = inference_discriminator(x)

with tf.variable_scope('D'):
 output_D2 = inference_discriminator(output_G)

cost_d = loss_d_GAN(output_D1,output_D2)

cost_g = loss_g_GAN(output_D2)

train_op_d = training_GAN(cost_d)

train_op_g = training_GAN(cost_g)

We are almost done. All that remains is to initialize the variables and create the

session.

init = tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

Before we call the main loop we need to have some training data. In this case we

call the data generating classes we previously defined and create some data.

181

data=DataDistribution()

gen=GeneratorDistribution(range=8)

Finally, we can call the main loop as follows:

for step in range(num_steps):

 x_data = data.sample(batch_size)
 z_data = gen.sample(batch_size)

 ## reshape from row to column vector
 x_reshaped = np.reshape(x_data, (batch_size, 1))
 z_reshaped = np.reshape(z_data, (batch_size, 1))
 res_cost_d,res_train_d = sess.run(
 [cost_d,train_op_d], feed_dict={x: x_reshaped,z: z_reshaped})

 #update new data for generator
 z_data = gen.sample(batch_size)
 z_reshaped = np.reshape(z_data, (batch_size, 1))
 res_cost_g, res_train_g = sess.run(
 [cost_g,train_op_g], feed_dict={ z: z_reshaped })

 if step % display_step == 0:
 print('{}: cost_d: {:.4f}\t cost_g: {:.4f}'.format(

 step, res_cost_d, res_cost_g))
 print('{}: train_d {}\t train_g: {}'.format(
 step, res_train_d, res_train_g))

And that is it! We have completed our GAN model.

8.2 Some Uses of GANs

Generative Adversarial Networks (GANs) are one of the latest and most exciting

developments in machine learning during the last decade (Goodfellow 2014). At

this point, the use of GANs has been focused on research for image processing

and synthetic generation. However, several studies have looked at the application

of GANs to cyber security problems.

182

 Currently, GANs have been used to generate works of art in the styles of

Picasso, for instance, or they can potentially generate text that is similar to the

styles of Shakespeare or other great authors. The application of GANs to cyber

security is more recent but there already exists a body of work to highlight

possible applications. In particular, the common theme is that GANs can be used

by attackers to masquerade their efforts. Recent works have used GANs for

password generation (Hitaj 2017) and steganography (Shi 2017). It is easy to see

how this idea could also be extended to polymorphic viruses and synthetically

generated network attacks.

Understanding how attackers can use GANs to masquerade their efforts is critical

to understanding how to develop better intrusion or malware detection systems.

8.3 Summary

In this chapter, a description of Generative Adversarial Networks was provided.

Some sample code was addressed as well as some applications of GANs to cyber

security.

183

CHAPTER 9: REINFORCEMENT LEARNING

In this section of the book I will cover the topic of Reinforcement Learning. This

is an area of machine learning somewhere between supervised learning and

unsupervised learning. It has been extensively applied to recommender systems

and AI-based games. Recently, it was shown that a deep Q-network, using only

pixels and game scores as inputs, could surpass achieve a playing level

comparable to that of professional human gamers across a set of 49 Atari games

(Mnih et al. 2015). The main advantage of applying reinforcement learning to

games is that games are governed by rules. You have game states (the inputs) and

actions (output) that lead to new states and rewards (the objectives to maximize).

Because of this, no annotation is neededand instead you rely on the rules of the

game for feedback (e.g. instead of annotated labels).

There are several types of reinforcement learning techniques. In this chapter, I

will focus on getting started with Q-learning since this is the technique used in

the Mnih et al (2015) paper I referenced above. Here, I will try to provide a

simple intuition based description of the technique. I should note that to achieve

the level of Q-Learning presented in the Mnih et al (2015) paper, several

additional optimizations need to be included. However, the discussion in this

chapter should provide a simple way to get started with Q-Learning.

So what is Q-Learning? Q-Learning tries to learn the value of being in a given

state (s), and taking a specific action from there.

As I indicated, Q-learn has been applied to games. The best way to understand

the algorithm is to analyze it from the point of view of a game. Here we will use

Python’s OpenAI Gym module to play games. We will select the simple

FrozenLake game environment.

184

FrozenLake is a game about crossing a frozen lake that has some cracks in the ice

with holes and there is wind sometimes that pushes the person crossing it. The

game is very simle and consists of a grid that is 4x4 like so.

hole frozen cheese hole

frozen frozen hole frozen

hole frozen frozen hole

frozen hole frozen start

So, the objective is to get to the cheese without falling into a hole or being

pushed by the wind into a hole. There are 4 moves which are up, down, right, and

left. There is only one reward and that is to get to the cheese. However, you only

get that reward in the future by first taking several steps on frozen blocks without

falling in a hole. Therefore, one challenge is that you have to state your objective

in terms of several future moves. This is accomplished using something called

the Bellman Equation.

The key to predicting these rewards is to know the associated reward given a

current state and action to take. This is called a Q maping

 Q (state, action) = reward

For such a simple grid, we could just use a table. In this case our table would be

16x4 because there are 16 possible states (position in the grid of 4x4) and there

are 4 actions (up, down, right, left). Since we know the rules of the game and the

layout of the grid, we can populate the table and learn the Q rewards for each

state/action pair.

185

An example of the table can be seen below.

 Up Down Left right

State1 Q=0.6 Q=0.8 Q=0.1 Q=0.0

State2

State3

State4 0 0.1

State5

State6 0

State7 0.6 0

State8 1

State9 0

State10 0 1

State11 1

State12 0.02

State13 0.4

State14 0.6

State15 0.3 0

State16 1 0

Figure. Q-Learn Table

186

Now the main challenge is that we need to learn future rewards for future actions

as we move through the grid. Here the bellman equation will help. Think if the

bellman equation as a type of recursive equation that looks at the future state

given a current state. The Bellman equation is as follows:

 Q(state, action) = reward + weight * max [Q(future_state, future_action)]

These values can be looked up from the Table.

The code discussed here can be downloaded from the course website or the

github repository. In the next section, the python Q-learning code will be

discussed which only uses a table to determine the rewards and the path to

follow. Section 9.2 will use the same algorithm but will replace the use of the

table with a neural network so that we can see how deep neural networks can

improve the approach.

9.1 Q-Learning using a Table

In this section we discuss the code to implement Q-Learning using a table. This

code makes use of the OpenAI gym library. The libraries used can be seen in the

next code segment.

import numpy as np
import gym

The frozenLake game can be initialized by creating the env object as can be seen

below. This object represents the game and holds all the parameters related to

states, actions, rewards, and current game state.

187

env = gym.make('FrozenLake-v0')

The next step is to initialize the table Q to all zeros and of size 16x4. Here

env.observation_space.n = 16 and env.action_space.n = 4.

Q = np.zeros([env.observation_space.n,env.action_space.n])
lr = .8
y = .95
num_episodes = 2000

We take 2000 epochs (or episodes) and initialize some parameters lr and y. Each

episode represents a game played. We use jList and rList to collect the number

of steps taken per episode and the total reward per episode, respectively. These

are used to collect results of each game.

jList = []

rList = []

The following code segment goes over the main loop of the Q-learn algorithm. In

the next code segment, the line

 for i in range(num_episodes):

188

indicates that we are going to play num_episodes=2000 games. During these

2000 tries we will learn the best path to take.

for i in range(num_episodes):
 s = env.reset()
 rAll = 0
 d = False
 j = 0
 while j < 99:
 j+=1
 zz = env.action_space.n
 a=np.argmax(Q[s,:]+np.random.randn(1,zz) *(1.0/(i+1)))
 s1,r,d,_ = env.step(a)
 Q[s,a] = Q[s,a] + lr*(r + y*np.max(Q[s1,:]) - Q[s,a])
 rAll += r
 s = s1
 if d == True:
 break
 #jList.append(j)
 rList.append(rAll)

The line

 s = env.reset()

restarts the game for every episode so we can play it again and assign the initial

state to s. The variable rAll adds up the accumulated rewards for this episode.

The variables d and j are control variables to indicate if the game has ended and

to count the number of steps taken.

The code in the while loop is what allows the algorithm to learn or update the

values in the Q table designated by the variable Q. To take the first step we need

to pick an action to follow. We do this with the following lines of code

 zz = env.action_space.n
 a=np.argmax(Q[s,:]+np.random.randn(1,zz) *(1.0/(i+1)))

189

The variable zz is the size n of all actions in the game (up, down, left, right)

which in this case is 4. The statement Q[s, :] selects the current Q values

(rewards) associated with state s. The statement

 np.random.randn(1,zz) *(1.0/(i+1))

adds randomness to the 4 Q values for the current state. Basically, you randomly

increment the Q values for the current state and then select the highest one with

 np.argmax()

by selecting the highest Q value you determine what action (a) you take given the

current state.

Once the action a is selected, we can proceed to evaluate it in the game to obtain

our new state (position) and the reward (did we fall in a hole or advanced to a

frozen block). We do this with

 s1,r,d,_ = env.step(a)

here, s1 is the new state (position) and r is the reward. The parameter d indicates

end of the game. Given this new information about the result of our action, we

can proceed to update the Q-table with our new resuts and new knowledge about

the state of the game. This is done with the statement

 Q[s,a] = Q[s,a] + lr*(r + y*np.max(Q[s1,:]) - Q[s,a])

In this statement, Q[s, a] contains the current Q value (reward) associated with

the state s and the action a. This is the Bellman equation which can be viewed as

190

 next_s_Q = lr*(r + y*np.max(Q[s1,:]) - Q[s,a])

 Q[s,a] = Q[s,a] + next_s_Q

next_s_Q contains the current reward for state s plus the maximum reward for

the next state s1. The parameters lr and y are weights to control the importance

of the next state’s reward when updating the current states reward (Q value).

We can think of this parameter

 - Q[s,a])

as a regularization parameter.

At this point we are almost done and we can proceed to accumulate our results.

The statement

 rAll += r

accumulates the total rewards. The statement

 s = s1

assigns the current state s1 to s. The line

 if d == True:
 break

ends the game if d indicates end of game. The statement

 jList.append(j)

accumulates the number of steps taken to reach end of game. The statement

 rList.append(rAll)

appends rewards per game to a list so that they can be viewed later.

191

print "Score over time: " + str(sum(rList)/num_episodes)

That is it. We have finished our discussion of Q-learn with tables on the

frozenLake game. Now we can proceed to replace the table with a neural

network.

9.2 Q-Learning using a Neural Network

Now that we understand the frozenLake game with a table, we can proceed to

replace the table with a neural network. It is important to note here that the

weigths matrix W in the neural network will now represent the Q table.

In this section of the chapter I will only discuss the parts that are different from

the previous implementation.

First we include the libraries as can be seen below. Notice we now add

Tensorflow.

import gym
import numpy as np
import random
import tensorflow as tf
import matplotlib.pyplot as plt

We create the game with the env object.

192

env = gym.make('FrozenLake-v0')

Next, we define our familiar neural network functions inference(), loss(), and

train(). The function inference() creates W which is our new Q table. Notice the

dimensions of W are 16x4 because we have 16 states in the game and 4 actions.

Qout (our predicted y in previous chapters) is the result of a matmul operation

between inputs1 (our states) and W (the weiths or Q values in this case).

With

 predict = tf.argmax(Qout,1)

we select the action (a) to take. Here is the code for the inference function.

def inference(inputs1):
 W = tf.Variable(tf.random_uniform([16,4],0,0.01))
 Qout = tf.matmul(inputs1,W)
 predict = tf.argmax(Qout,1)
 return predict, Qout, W

As can be seen from the previous code, the network looks like the figure below.

It is important to note that this is a basic architecture and that much more

complex deep architectures with different activation functions could be used such

as architectures with many hidden layers or convolutional neural networks, etc.

193

Figure. Q-Learning network.

194

The loss function is Least Squares Estimation which is the same as linear

regression! Here, basically,we compare Current_Q to estimated_Q and try to

minimize the error.

def loss(nextQ, Qout):
 loss = tf.reduce_sum(tf.square(nextQ - Qout))
 return loss

The optimization is nothing more than the very familiar Gradient Descent with a

learning rate of 0.1.

def train(loss):
 trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
 updateModel = trainer.minimize(loss)
 return updateModel

I leave evaluate() for the reader to complete as an exercise.

def evaluate():
 print "evaluate"

In the next statement we initialize the placeholder to hold the data. The

placeholder inputs1 holds the one hot encoded vector representing the state of

the game. The placeholder nextQ is used to store the one hot encoded vector of

the 4 possible rewards for each action to take.

195

tf.reset_default_graph()

inputs1 = tf.placeholder(shape=[1,16],dtype=tf.float32)
nextQ = tf.placeholder(shape=[1,4],dtype=tf.float32)

Next, we call the core functions like so

predict, Qout, W = inference(inputs1)
cost = loss(nextQ, Qout)
trainOp = train(cost)

Now we are ready for the main loop. We initialize the variables in the graph and

a few parameters.

init = tf.initialize_all_variables()
y = 0.99
e = 0.1
num_episodes = 2000

Then we create lists to contain total steps taken per episode (game) and total

rewards per game.

jList = []
rList = []

196

Finally, we are ready for the main loop which is shown in the next code segment

below.

with tf.Session() as sess:
 sess.run(init)
 for i in range(num_episodes):
 s = env.reset()
 rAll = 0
 d = False
 j = 0
 while j < 99:
 j=j+1
 a,allQ = sess.run([predict,Qout], feed_dict=

{inputs1:np.identity(16)[s:s+1]})

 s1,r,d,_ = env.step(a[0])
 Q1 = sess.run(Qout, feed_dict=

{inputs1:np.identity(16)[s1:s1+1]})

 maxQ1 = np.max(Q1)
 targetQ = allQ
 targetQ[0,a[0]] = r + y*maxQ1
 _,W1 = sess.run([trainOp, W], feed_dict=

{inputs1:np.identity(16)[s:s+1],nextQ:targetQ})

 rAll += r
 s = s1
 if d == True
 break
 jList.append(j)
 rList.append(rAll)

As an be seen in the code segment below, we run the main loop 2000 times

(num_episodes) which means that we play 2000 games. Each time we play a

game, we reinitialize the board (s = env.reset()) and initialize the rewards

variable (rAll) to zero. The variable j is the counter for the current step and d is

used to determine in the game is over (win or loss).

197

 for i in range(num_episodes):
 s = env.reset()
 rAll = 0
 d = False
 j = 0

for every game iteration we run the following while loop. This while loop is the

main code that helps us to learn that Q values and traverse the board (e.g. play

the frozen lake game).

 while j < 99:
 j=j+1
 a,allQ = sess.run([predict,Qout], feed_dict=

{inputs1:np.identity(16)[s:s+1]})

 s1,r,d,_ = env.step(a[0])
 Q1 = sess.run(Qout, feed_dict=

{inputs1:np.identity(16)[s1:s1+1]})

 maxQ1 = np.max(Q1)
 targetQ = allQ
 targetQ[0,a[0]] = r + y*maxQ1
 _,W1 = sess.run([trainOp, W], feed_dict=

{inputs1:np.identity(16)[s:s+1],nextQ:targetQ})

 rAll += r
 s = s1
 if d == True
 break

We perform 99 steps since it should not take more than 99 steps to traverse the

frozen lake. If it does, the game should end. The first line in the while loop is

used to increment the steps

 j=j+1

after incrementing the steps, we proceed to perform our first session run

operation to train the Tensorflow graph. Here we call predict and Qout from the

inference() function calls.

198

 a,allQ = sess.run([predict,Qout], feed_dict=
{inputs1:np.identity(16)[s:s+1]})

The statement

 np.identity(16)[s:s+1]

takes the current state in the variable s and converts it into a one-hot encoded

representation. For instance, if the current state is 4, then the one-hot encoded

representation (of size 16) looks like this

 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The next step is to take the predicted action in “a” and run it through the game.

We use a[0] instead of just a because a is a tensor. Assuming the action is 1

(down), printing a alone will result in

 [1]

Whereas, printing a[0] will result in

 1

So the below statement runs the action through env.step() and this function

returns the new state s1 which is the new position in the frozen lake grid, r is the

reward associated with the step s (for instance r=0.43) , and d indicates if the

game is over (found the cheese or fell in the frozen lake).

 s1,r,d,_ = env.step(a[0])

with the new state s1, we proceed to run the Tensorflow graph again with session

run. Here we call Qout again using s1.

199

Recall that Qout is

 Qout = tf.matmul(inputs1, W)

in the inference function. In this case, inputs1 is the one-hot encoded vector of

size 16 that represents state s1.

 Q1 = sess.run(Qout, feed_dict= {inputs1:np.identity(16)[s1:s1+1]})

So Q1 will now contain the 4 neuron vector with the Q values for all 4 actions

given state s1. Currently, the vector allQ for state s looks like this with some

values

 allQ = [0.0

 0.3

 0.4

 0.02]

And Q1 for state s1 looks like this for some values

 Q1 = [0.9

 0.1

 0.04

 0.7]

Therefore, we have predicted Q values for state “s” and predicted Q values for

state “s1”.

200

Next, we proceed to select the highest value in Q1. In this case maxQ1 gets

assigned the value 0.9 from our previous example (maxQ1=0.9). The code is as

follows

 maxQ1 = np.max(Q1)

now we use a new variable targetQ which will be equal to the bellman equation.

We assign to it allQ

 targetQ = allQ

so that targetQ is now

targetQ = [0.0

 0.3

 0.4

 0.02]

Recall that a[0] holds the index of the action taken (e.g. down or 1). Therefore, in

the vector targetQ we select that position (targetQ[0, 1]) and add to it the

reward value r and maxQ1 times some y parameter. Recall that the Bellman

equation looks like this:

 Q(state, action) = reward + weight * max [Q(future_state, future_action)]

The code is as follows

 targetQ[0,a[0]] = r + y*maxQ1

and with values this looks like the following

201

 targetQ[0,1] = 0.43 + 0.99*0.9

after this update rule targetQ has been modified from

 targetQ = [0.0

 0.3

 0.4

 0.02]

to

 targetQ = [0.0

 1.321

 0.4

 0.02]

interestingly, only one of the 4 values in targetQ is updated using the bellman

equation. The other values remain the same. Finally, we do a final update of the

Tensorflow graph by calling trainOp with session run and state “s”.

Additionally, the placeholder nextQ is assigned the result from the Bellman

equation targetQ.

 _,W1 = sess.run([trainOp, W], feed_dict=
{inputs1:np.identity(16)[s:s+1],nextQ:targetQ})

This is important because nextQ will be used in the loss function with the next

predicted Qout like so

202

predict, Qout, W = inference(inputs1)
cost = loss(nextQ, Qout)
trainOp = train(cost)

Finally, the last peace of code adds up the rewards, assigns the new state s1 to s,

and checks to see if the game is over.

 rAll += r
 s = s1
 if d == True
 break

once you exit the while loop, the last part is to append the results of the current

game to jList and rList.

 jList.append(j)
 rList.append(rAll)

Well, that is it with the algorithm discussion. Finally, we print our results and

plot them.

print "Percent of succesful episodes: " +

str(sum(rList)/num_episodes) + "%"

plt.plot(rList)
plt.show()
plt.plot(jList)
plt.show()

203

That is it. We have completed implementing our Q learning algorithm with a

neural network. In the next section we will add a simple improvement to the code

that will improve performance.

9.3 Q-Learning using a Neural Network and Randomness

In the previous section we described the code to implement Q-learning with a

neural network on the frozen lake game. That was the simplest implementation of

it.

with tf.Session() as sess:
 sess.run(init)
 for i in range(num_episodes):
 s = env.reset()
 rAll = 0
 d = False
 j = 0
 while j < 99:
 j=j+1
 a,allQ = sess.run([predict,Qout], feed_dict=

{inputs1:np.identity(16)[s:s+1]})

 if np.random.rand(1) < e:
 a[0] = env.action_space.sample()

 s1,r,d,_ = env.step(a[0])
 Q1 = sess.run(Qout, feed_dict=

{inputs1:np.identity(16)[s1:s1+1]})

 maxQ1 = np.max(Q1)
 targetQ = allQ
 targetQ[0,a[0]] = r + y*maxQ1
 _,W1 = sess.run([trainOp, W], feed_dict=

{inputs1:np.identity(16)[s:s+1],nextQ:targetQ})

 rAll += r
 s = s1
 if d == True:
 e = 1./((i/50) + 10)
 break
 jList.append(j)
 rList.append(rAll)

204

To improve the results, we can add a few lines of additional code which will

allow the algorithm to better converge and learn better Q-values. The additions

are simple and basically relate to adding randomness to the code. Notice in the

code above that a few new statements have been added.

These new lines add randomness to the selection of the next action to take. The

idea is that add the beginning of the learning process, the action prediction

function may not be very good. Therefore, picking an action randomly at the

beginning may be better than picking actions with the inference() function. This

is reflected in the code segment below.

 if np.random.rand(1) < e:
 a[0] = env.action_space.sample()

a random number is obtained and compared to e. If less than e, the action a[0] is

selected randomly

 a[0] = env.action_space.sample()

as the algorithm improves and the Q values are better, the value of e can be

adjusted so that action is more often selected with the inference function and not

with the random function

 a[0] = env.action_space.sample()

The code can be seen here.

 if d == True:
 e = 1./((i/50) + 10)
 break

 where

205

 e = 1./((i/50) + 10)

adjusts the value of “e”.

9.4 Summary

In this chapter we have discussed the Q learning algorithm as part of the larger

topic of Reinforcement Learning using tables and neural networks.

206

CHAPTER 10: CONCLUSIONS AND FINAL

THOUGHTS

In this book I have only begun to scratch the surface on deep learning

programming and methodologies. I hope that these examples and discussions

helped you to improve your deep learning coding skills and furthered your

interest in machine learning in general. There are many more deep learning

methodologies such as recurrent neural networks that you may want to pursue as

well. The Tensorflow website at www.tensorflow.org may be a good starting

point to continue your studies.

In this final chapter, I want to address a few loose ends relevant to Tensorflow

and I will present a few closing thoughts.

10.1 Benchmarking Tensorflow

In this section I want to address benchmarking. Tensorflow was made to be used

with GPUs and CPUs. If you want to test the performance of your processors,

one way to do it is with the following code. In the following code you are

performing a matrix multiplication using

 tf.matmul(a, b)

The important aspect is that you can select the device to use. For instance, the

following

 with tf.device('/cpu:0')

tells Tensorflow to use the CPU. In contrast, using

 with tf.device('/gpu:0')

would tell Tensorflow to perform the computations using the GPU.

207

import Tensorflow as tf

with tf.device('/cpu:0'):

 a = tf.zeros(shape=[10000,1000], dtype=tf.float32)

 b = tf.zeros(shape=[1000,1000], dtype=tf.float32)

 c = tf.matmul(a, b)

Creates session with log_device_placement set to True

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Runs the op.

for i in range(200):

 print i

 print sess.run(c)

10.2 Conclusions

Since 2007, computational power has certainly improved and today machine

learning can take advantage of these more powerful processors to process large

amounts of data. In the following table we can see that there are many types of

processors. Some are old and traditional and some are new and still experimental.

The most widely used processor before 2007 was the CPU. Now, GPUs are the

most exciting and promising because they allow deep neural networks to learn

the model parameters in very short periods of time.

The future may bring even more types of processors which will further

improve machine learning and deep neural networks. Currently, several

companies are starting to develop their own neural processors. Google, for

instance, has developed the Tensor Processing Unit (TPU). This processing unit

accelerates deep learning calculations on their servers.

